18 research outputs found

    Calpain cleavage of Junctophilin-2 generates a spectrum of calcium-dependent cleavage products and DNA-rich NT1-fragment domains in cardiomyocytes

    Get PDF
    Calpains are calcium-activated neutral proteases involved in the regulation of key signaling pathways. Junctophilin-2 (JP2) is a Calpain-specific proteolytic target and essential structural protein inside Ca2+ release units required for excitation-contraction coupling in cardiomyocytes. While downregulation of JP2 by Calpain cleavage in heart failure has been reported, the precise molecular identity of the Calpain cleavage sites and the (patho-)physiological roles of the JP2 proteolytic products remain controversial. We systematically analyzed the JP2 cleavage fragments as function of Calpain-1 versus Calpain-2 proteolytic activities, revealing that both Calpain isoforms preferentially cleave mouse JP2 at R565, but subsequently at three additional secondary Calpain cleavage sites. Moreover, we identified the Calpain-specific primary cleavage products for the first time in human iPSC-derived cardiomyocytes. Knockout of RyR2 in hiPSC-cardiomyocytes destabilized JP2 resulting in an increase of the Calpain-specific cleavage fragments. The primary N-terminal cleavage product NT1 accumulated in the nucleus of mouse and human cardiomyocytes in a Ca2+-dependent manner, closely associated with euchromatic chromosomal regions, where NT1 is proposed to function as a cardio-protective transcriptional regulator in heart failure. Taken together, our data suggest that stabilizing NT1 by preventing secondary cleavage events by Calpain and other proteases could be an important therapeutic target for future studies

    Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies

    Get PDF
    Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P1, a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P1 antibody binding profiles displayed much lower concordance. Whilst anti-P1 antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p = 0.004), we got only similar results using SA (p = 0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selection

    The glycosphingolipid P1 is an ovarian cancer-associated carbohydrate antigen involved in migration

    Get PDF
    Background The level of plasma-derived naturally circulating anti-glycan antibodies (AGA) to P1 trisaccharide has previously been shown to significantly discriminate between ovarian cancer patients and healthy women. Here we aim to identify the Ig class that causes this discrimination, to identify on cancer cells the corresponding P1 antigen recognised by circulating anti-P1 antibodies and to shed light into the possible function of this glycosphingolipid. Method An independent Australian cohort was assessed for the presence of anti-P1 IgG and IgM class antibodies using suspension array. Monoclonal and human derived anti-glycan antibodies were verified using three independent glycan-based immunoassays and flow cytometry-based inhibition assay. The P1 antigen was detected by LC-MS/MS and flow cytometry. FACS-sorted cell lines were studied on the cellular migration by colorimetric assay and real-time measurement using xCELLigence system. Results Here we show in a second independent cohort (n=155) that the discrimination of cancer patients is mediated by the IgM class of anti-P1 antibodies (P=0.0002). The presence of corresponding antigen P1 and structurally related epitopes in fresh tissue specimens and cultured cancer cells is demonstrated. We further link the antibody and antigen (P1) by showing that human naturally circulating and affinity-purified anti-P1 IgM isolated from patients ascites can bind to naturally expressed P1 on the cell surface of ovarian cancer cells. Cell-sorted IGROV1 was used to obtain two study subpopulations (P1-high, 66.1%; and P1-low, 33.3%) and observed that cells expressing high P1-levels migrate significantly faster than those with low P1-levels. Conclusions This is the first report showing that P1 antigen, known to be expressed on erythrocytes only, is also present on ovarian cancer cells. This suggests that P1 is a novel tumour-associated carbohydrate antigen recognised by the immune system in patients and may have a role in cell migration. The clinical value of our data may be both diagnostic and prognostic; patients with low anti-P1 IgM antibodies present with a more aggressive phenotype and earlier relapse

    Multiplex suspension array for human anti-carbohydrate antibody profiling

    Full text link
    Glycan-binding antibodies form a significant subpopulation of both natural and acquired antibodies and play an important role in various immune processes. They are for example involved in innate immune responses, cancer, autoimmune diseases, and neurological disorders. In the present study, a microsphere-based flow-cytometric immunoassay (suspension array) was applied for multiplexed detection of glycan-binding antibodies in human serum. Several approaches for immobilization of glycoconjugates onto commercially available fluorescent microspheres were compared, and as the result, the design based on coupling of end-biotinylated glycopolymers has been selected. This method requires only minute amounts of glycans, similar to a printed glycan microarray. The resulting glyco-microspheres were used for detection of IgM and IgG antibodies directed against ABO blood group antigens. The possibility of multiplexing this assay was demonstrated with mixtures of microspheres modified with six different ABO related glycans. Multiplexed detection of anti-glycan IgM and IgG correlated well with singleplex assays (Pearson's correlation coefficient r = 0.95-0.99 for sera of different blood groups). The suspension array in singleplex format for A/B trisaccharide, H(di) and Le(x) microspheres corresponded well to the standard ELISA (r > 0.94). Therefore, the described method is promising for rapid, sensitive, and reproducible detection of anti-glycan antibodies in a multiplexed format

    No benefit from combining HE4 and CA125 as ovarian tumor markers in a clinical setting

    Full text link
    OBJECTIVE: About 70% of epithelial ovarian cancer patients (EOC) are diagnosed at advanced stage with a five-year survival rate of only 30%. Whilst CA125 detects peritoneally-spread disease, it has limited sensitivity for early cancers, many of which are potentially curable. METHODS: We compared the new commercially available tumor marker HE4 with CA125 individually, in combination, within the risk of malignancy index (RMI) and the newly defined risk of malignancy algorithm (ROMA). Our prospectively-collected cohort of 160 patients consisted of healthy controls, benign diseases, and borderline tumors/adenocarcinomas of ovarian, tubal, peritoneal and endometrial origin. HE4 and CA125 were measured in serum using standardized ELISA. RESULTS: Both markers showed similar diagnostic performance in the detection of EOC at clinically defined thresholds (CA125 35U/ml; HE4 70pM) but HE4 was not elevated in endometriosis. Comparison of non-malignant diagnoses (n=71) versus early stage ovarian and tubal cancers (n=19) revealed that HE4 and ROMA displayed the best diagnostic performance (AUC 0.86/0.87, specificity 85.9%/87.3% and sensitivity 78.9%/78.9%, respectively). Whilst RMICA125 detects peritoneal cancer better than all other models (AUC 0.99, specificity 97.2%, sensitivity 80.0%), there is no other detection benefit from RMI compared to HE4 alone or included in ROMA. CONCLUSIONS: The major advantage of HE4 lies in its specificity and improved detection of borderline tumors and early stage ovarian and tubal cancers. HE4 is superior to CA125 with or without RMI and ROMA indices. However, we see no benefit from combining both markers in clinical practice

    Design of the blood group AB glycotope

    No full text
    Although the nature of the blood groups A and B has been comprehensively studied for a long time, it is still unclear as to what exactly is the epitope that is recognized by antibodies having AB specificity, i.e. monoclonal and polyclonal antibodies which are capable of interacting equally well with the antigens GalNAcalpha 1-3(Fucalpha 1-2)Gal (A trisaccharide) and Galalpha 1-3(Fucalpha 1-2)Gal (B trisaccharide), but do not react with their common fragment Fucalpha 1-2Gal. We have supposed that besides Fucalpha 1-2Gal, A and B antigens have one more shared epitope. The trisaccharides A and B are practically identical from the conformational point of view, the only difference being situated at position 2 of Galalpha residue, i.e. trisaccharide A has a NHAc group, whereas trisaccharide B has a hydroxyl group (see formulas). We have hypothesized that the AB-epitope should be situated in the part of the molecule that is opposite to the NHAc group of GalNAc residue. In order to test this hypothesis we have synthesized a polymeric conjugate in such a way that de-N-acetylated A-trisaccharide is attached to a polymer via the nitrogen in position C-2 of the galactosamine residue. In this conjugate the supposed AB-epitope should be maximally accessible for antibodies from the solution, whereas the discrimination site of antigens A and B by the antibodies should be maximally hidden due to the close proximity of the polymer. Interaction with several anti-AB monoclonal antibodies revealed that a part of them really interacted with the synthetic AB-glycotope, thus confirming our hypothesis. Moreover, similar antibodies were revealed in the blood of healthy blood group 0 donors. Analysis of spatial models was performed in addition to identify the hydroxyl groups of Fuc, Galalpha, and Galbeta residues, which are particularly involved in the composition of the AB-glycotope

    P1 glycosphingolipid is an ovarian cancer-associated carbohydrate antigen and enhances cell migration

    No full text
    Aims: We previously showed that levels of plasma-derived naturally circulating anti-glycan antibodies (AGA) to P1 trisaccharide was lower in ovarian cancer patients than healthy women. We investigated which Ig-class of these AGA accounts for this discrimination "cancer vs. healthy", whether P1 is indeed expressed on ovarian cancer cells, and what the biological functions of P1 may be. Methods: Suspension array was employed to assess the presence of anti-P1 IgG- and IgM-class antibodies in the plasma/ascites. Findings were verified using three independent glycan-based immunoassays and flow cytometry. LC-MS/MS and flow cytometry were performed to detect P1 antigen on tissue and cells. FACS-sorting was used to produce two IGROV1 cell subpopulations (P1-low, P1-high) which were employed in transwell-assay and real-time xCELLigence system to assess cell migration. Results: We show (independent cohort, n=155) that it is the IgM-class of anti-P1 antibodies which accounts for the previously observed discrimination "cancer vs. healthy" (p=0.0002). We also demonstrate that P1 antigen is indeed expressed on cells from fresh tissue specimens and on cultured ovarian cancer cells and that this naturally expressed P1antigen is recognized and bound by naturally circulating and affinity purified anti-P1-IgM isolated from patients ascites. IGROV1 cells expressing high levels of P1 (66%) migrated significantly faster than P1-low cells (33%). Conclusion: P1 antigen is for the first time reported to be expressed on ovarian cancer cells and is thus proposed as a novel ovarian cancer-associated carbohydrate antigen with a potential diagnostic and prognostic value. P1 glycosphingolipid may also play a role in cell migration.2 page(s
    corecore